Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Infectious Diseases: News, Opinions, Training ; 11(1):21-27, 2022.
Article in Russian | EMBASE | ID: covidwho-2323742

ABSTRACT

COVID-19, caused by the novel SARS-CoV-2 virus, poses major challenges for global public health. The detection of antibodies in blood serum is one of the important methods for diagnostics of COVID-19 patients. The main aim was to study the dynamics of the appearance of neutralizing antibodies and antibodies to the SARS-CoV-2 proteins in COVID-19 patients sera. Material and methods. The blood sera of four groups of people were studied: "intact" donors (blood sera were collected in 2016-2019);patients with a laboratory-confirmed diagnosis of acute respiratory viral infection;patients with influenza (antibodies to the influenza virus have been identified) and patients with a PCR confirmed diagnosis of COVID-19. Blood sera were analyzed in ELISA with commercial kits for detection of IgG to SARS-CoV-2 (N, S) proteins and total antibodies to RBD of protein S and in neutralization test (NT). Results and discussion. Antibodies to SARS-CoV-2 were not detected in paired blood sera of people from groups 1-3 by ELISA and NT. At the time of hospitalization of patients with COVID-19 in the sera of 12 (19%) patients antibodies to SARS-CoV-2 were absent when they were determined by NT and ELISA. In blood sera taken 4-9 days after hospitalization, neutralizing antibodies and antibodies to at least one viral protein were detected in ELISA. Conclusion. At the time of hospitalization, the overwhelming majority of patients had a humoral immune response to the SARS-CoV-2. In the dynamics of observation, the levels of antibodies to SARS-CoV-2 proteins increased, to a greater extent to RBD.Copyright © 2022 Geotar Media Publishing Group

2.
Dokl Biochem Biophys ; 507(1): 237-241, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2193597

ABSTRACT

The aim of this work was to design and characterize peptides based on the α-helices h1 and h2 of the ACE2 receptor, forming the interaction interface between the receptor-binding domain (RBD) of the SARS-CoV-2 S protein and the cellular ACE2 receptor. Monomeric and heterodimeric peptides connected by disulfide bonds at different positions were synthesized. Solubility, RBD-binding affinity, and peptide helicity were experimentally measured, and molecular dynamics simulation was performed in various solvents. It was established that the preservation of the helical conformation is a necessary condition for the binding of peptides to RBD. The peptides have a low degree of helicity and low affinity for RBD in water. Dimeric peptides have a higher degree of helicity than monomeric ones, probably due to the mutual influence of helices. The degree of helicity of the peptides in trifluoroethanol is the highest; however, for in vitro studies, the most suitable solvent is a water-ethanol mixture.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Molecular Dynamics Simulation , Peptides , Protein Binding , SARS-CoV-2
3.
Infectious Diseases: News, Opinions, Training ; 11(1):21-27, 2022.
Article in Russian | Scopus | ID: covidwho-1812106

ABSTRACT

COVID-19, caused by the novel SARS-CoV-2 virus, poses major challenges for global public health. The detection of antibodies in blood serum is one of the important methods for diagnostics of COVID-19 patients. The main aim was to study the dynamics of the appearance of neutralizing antibodies and antibodies to the SARS-CoV-2 proteins in COVID-19 patients sera. Material and methods. The blood sera of four groups of people were studied: “intact” donors (blood sera were collected in 2016-2019);patients with a laboratory-confirmed diagnosis of acute respiratory viral infection;patients with influenza (antibodies to the influenza virus have been identified) and patients with a PCR confirmed diagnosis of COVID-19. Blood sera were analyzed in ELISA with commercial kits for detection of IgG to SARS-CoV-2 (N, S) proteins and total antibodies to RBD of protein S and in neutralization test (NT). Results and discussion. Antibodies to SARS-CoV-2 were not detected in paired blood sera of people from groups 1-3 by ELISA and NT. At the time of hospitalization of patients with COVID-19 in the sera of 12 (19%) patients antibodies to SARS-CoV-2 were absent when they were determined by NT and ELISA. In blood sera taken 4-9 days after hospitalization, neutralizing antibodies and antibodies to at least one viral protein were detected in ELISA. Conclusion. At the time of hospitalization, the overwhelming majority of patients had a humoral immune response to the SARS-CoV-2. In the dynamics of observation, the levels of antibodies to SARS-CoV-2 proteins increased, to a greater extent to RBD. © 2022 Geotar Media Publishing Group

4.
Acta Naturae ; 13(4): 78-81, 2021.
Article in English | MEDLINE | ID: covidwho-1675629

ABSTRACT

The pandemic caused by the novel betacoronavirus SARS-CoV-2 has already claimed more than 3.5 million lives. Despite the development and use of anti-COVID-19 vaccines, the disease remains a major public health challenge throughout the world. Large-scale screening of the drugs already approved for the treatment of other viral, bacterial, and parasitic infections, as well as autoimmune, oncological, and other diseases is currently underway as part of their repurposing for development of effective therapeutic agents against SARS-CoV-2. In this work, we present the results of a phenotypic screening of libraries of modified heterocyclic bases and 5'-norcarbocyclic nucleoside analogs previously synthesized by us. We identified two leading compounds with apparent potential to inhibit SARS-CoV-2 replication and EC50 values in a range of 20-70 µM. The structures of these compounds can be further optimized to develop an antiviral drug.

5.
Zhurnal Mikrobiologii Epidemiologii i Immunobiologii ; 98(6):648-656, 2021.
Article in Russian | Scopus | ID: covidwho-1633436

ABSTRACT

Introduction. In clinical practice, the differential diagnosis of COVID-19 can be challenging during the flu season, entailing serious consequences such as delays in appropriate control measures against the SARS-CoV-2 pandemic. Another problem is posed by co-infection of SARS-CoV-2 and influenza virus (IV), which significantly contributes to the severity of the COVID-19 disease. This study was aimed to explore the cross-impact of co-administration of Russian influenza and COVID-19 vaccines on development of specific immunity in laboratory animals. Materials and methods. The study was conducted on BALB/c mice. The animals were inoculated intramuscularly with the vaccine for COVID-19 prevention (CoviVac) and the vaccine for influenza prevention (Flu-M). The sera from the immunized animals were examined separately. Three IV strains were used in the hemagglutination inhibition assay. Antibodies (Abs) against SARS-CoV-2 were detected by an enzyme-linked immunosorbent assay (ELISA). The neutralization test was performed to detect virus neutralizing antibodies against SARS-CoV-2 and IV. Results. Relatively high titers of specific Abs were found in the groups of animals inoculated with one vaccine and with two vaccines concurrently. In the groups of animals inoculated with CoviVac and with two vaccines concurrently, both in the ELISA test and in the neutralization test, the average titers of specific Abs against SARSCoV-2 did not demonstrate any statistical difference. The group of animals inoculated concurrently with two vaccines demonstrated statistically higher titers of Abs against IV after the second immunization compared to the group of animals inoculated with Flu-M. Discussion. The study has shown that post-vaccination immunity both to IV and to SARS-CoV-2 develops after co-vaccination with two vaccines. The observed enhanced post-vaccination immune response to IV in the coimmunized laboratory animals needs further research. Conclusion. The performed studies suggest the possibility of co-administration of two vaccines to prevent influenza and COVID-19. © 2021, Central Research Institute for Epidemiology. All rights reserved.

6.
Biochem Mosc Suppl B Biomed Chem ; 15(4): 274-280, 2021.
Article in English | MEDLINE | ID: covidwho-1501553

ABSTRACT

Computer simulation has been used to identify peptides that mimic the natural target of the SARS-CoV-2 coronavirus spike (S) protein, the angiotensin-converting enzyme type 2 (ACE2) cell receptor. Based on the structure of the complex of the protein S receptor-binding domain (RBD) and ACE2, the design of chimeric molecules consisting of two 22-23-mer peptides linked to each other by disulfide bonds was carried out. The chimeric molecule X1 was a disulfide dimer, in which terminal cysteine residues in the precursor molecules h1 and h2 were connected by the S-S bond. In the chimeric molecule X2, the disulfide bond was located in the middle of each precursor peptide molecule. The precursors h1 and h2 mimic amino acid sequences of α1- and α2-helices of the ACE2 extracellular peptidase domain, respectively, keeping intact most of the amino acid residues involved in the interaction with RBD. The aim of the work was to evaluate the binding efficiency of chimeric molecules and their constituent peptides with RBD (particularly in dependence of the middle and terminal methods of fixing the initial peptides h1 and h2). The proposed polypeptides and chimeric molecules were synthesized by chemical methods, purified to 95-97% purity, and characterized by HPLC and MALDI-TOF mass spectrometry. Binding of these peptides to the SARS-CoV-2 RBD was evaluated by microthermophoresis with recombinant domains corresponding in sequence to the original Chinese (GenBank ID NC_045512.2) and the British (B. 1.1.7, GISAID EPI_ISL_683466) variants. The original RBD of the Chinese variant bound to three synthesized peptides: linear h2 and both chimeric variants. Chimeric peptides were also bound to the RBD of the British variant. The antiviral activity of the proposed peptides was evaluated in Vero cell line.

7.
Biomed Khim ; 67(3): 244-250, 2021 May.
Article in Russian | MEDLINE | ID: covidwho-1278812

ABSTRACT

Computer simulation has been used to identify peptides that mimic the natural target of the SARS-CoV-2 coronavirus spike (S) protein, the angiotensin converting enzyme type 2 (ACE2) cell receptor. Based on the structure of the complex of the protein S receptor-binding domain (RBD) and ACE2, the design of chimeric molecules consisting of two 22-23-mer peptides linked to each other by disulfide bonds was carried out. The chimeric molecule X1 was a disulfide dimer, in which edge cysteine residues in the precursor molecules h1 and h2 were connected by the S-S bond. In the chimeric molecule X2, the disulfide bond was located in the middle of the molecule of each of the precursor peptides. The precursors h1 and h2 modelled amino acid sequences of α1- and α2-helices of the extracellular peptidase domain of ACE2, respectively, keeping intact most of the amino acid residues involved in the interaction with RBD. The aim of the work was to evaluate the binding efficiency of chimeric molecules and their RBD-peptides (particularly in dependence of the middle and edge methods of fixing the initial peptides h1 and h2). The proposed polypeptides and chimeric molecules were synthesized by chemical methods, purified (to 95-97% purity), and characterized by HPLC and MALDI-TOF mass spectrometry. The binding of the peptides to the SARS-CoV-2 RBD was evaluated by microthermophoresis with recombinant domains corresponding in sequence to the original Chinese (GenBank ID NC_045512.2) and the British (B. 1.1.7, GISAID EPI_ISL_683466) variants. Binding to the original RBD of the Chinese variant was detected in three synthesized peptides: linear h2 and both chimeric variants. Chimeric peptides were also bound to the RBD of the British variant with micromolar constants. The antiviral activity of the proposed peptides in Vero cell culture was also evaluated.


Subject(s)
COVID-19 , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme 2 , Computer Simulation , Humans , Peptides , Peptidyl-Dipeptidase A/genetics , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL